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MOTION OF SAND GRAINSIBY WINDI

Ryoma Kawamura*

1. IhtroductioQn /500**

If we go out to a beach on a windy day, we can see that the

surface sand ripples under the wind. A traveller in a desert

knows how annoying a sandstorm can be. Although our country

(Japan) does not have any desert, there are a lot of places

where invasion and erosion by sand can cause great damage and for

this reason these places devote much effort in preventing it

from happening. Consequently, to study the motion of sand in a

wind is not only an interesting academic problem, but it would

also provide the needed knowledge in establishing erosion control.

In the following sections, the results of present research on

this problem will be described.

2. Sand Movement Disturbed by a Wind.

Wind does not always blow in a regular pattern. It changes

its direction as well as its speed. Such a wind pattern is

called turbulence, and it is different from what we commonly

call a wind. To study sand movement, we must first know how a

sand particle moves around under the influence of turbulence.

An object as small as a sand particle, when it moves in the air,

Research Fellow, Institute of Science and Technology.

** Numbers in the margin indicate pagination of original
foreign text.
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due to the small Reynolds number in

such a case, has a resistance pro-

portional to its speed according to

.. Stokes' law. Although a sand parti-

Sf cle generally has a very irregular

shape, it can be approximated to a

/ sphere with the equivalent volume.

The motion of this sphere in the

, : horizontal direction (the x-direction)

can be worked out as follows:
Ripple-Formation on the sur- (1)

face of a sand du.ne.
where m: the mass of the sand par-

ticle; p: the coefficient of viscosity of the air; d: the dia-

meter of the sand particle, and u: the x-component of the air

velocity. If we assume the horizontal speed of the turbulence

in the simple form of u = U + u sin wt, Equation (1) can be

solved with respect to an appropriately chosen origin, namely

x=U(1+Ae-Pfy+uoBsin(ot -8)

where

0=3p1d,', B=1/A1+ ( s) a =tairr- aq

and A is a constant.

If we compare the second term of the solution with the air

oscillation, we see that the sand particle oscillates with the

air, and its amplitude is B times the air oscillation with a

phase retardation of 6. As we shall see later, when a sand par-

ticle moves around in turbulence, it takes about 0.2 sec for it

to join the turbulence. Thus, this time delay ought to be taken
-i

into account to begin with. If w = 2 r X 5 sec , then the re-

lation between the diameter of the particle, d, and the ampli--14
tude, B, can be shown, as in Table 1; but i = 1.87 X 10- gm/

(cm'sec) and the density of the sand particle 6 = 2.65 gm/cm

From the Table, one can see that for diameters smaller than 0.1 mm,
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there is the possibility for the sand particle to be captured

by the turbulence, while for diameters larger than 0.25 mm, the

sand particle would not be greatly influenced by turbulence. A

small particle takes a long time to fall down to the ground, be-

cause air viscosity slows down its velocity. Consequently, when

one considers sand particles with diameters smaller than 0.1 mm,

the problem should be treated by the air diffusion coefficient,

as in the case of temperature and water vapor. On the other

hand, sand particles with diameters greater than 0.25 mm, not

greatly influenced by turbulence, move in simple projectile

motions.

TABLE 1.
3. Types of Sand Motions

dmm B

0.05 0.850

0.10 0.374 Sand motions due to wind are of 3 types:

0.25 0.W4 suspension, saltation, and surface creep. This
0.50 0 .016
1.0 0.004 fact was first observed by Bagnold and Chepil.

The first kind of motion --Inamely, suspension - is 1

mainly for minute particles with diameters around 0.1 - 0.05 mm.

The particles can be carried for a long distance, and in an or-

dinary wind they reach an altitude of several meters. This

fact confirms what we have described in the previous section.

The second kind of motion, saltation motion, is the jumping up-

and-down motion by sand particles, as shown in Figure 1. This

is mainly by particles with diameters of 0.2 - 0.3 cm. In this

motion, sand particles jump up drawing a flying curve, then fall

down to the ground to collide but bounce back up again, or to

be caught by the sand surface. This motion is restricted, itself,

within a height of 2-20 cm from the sand surface, and thus the

flying motion distance is also much shorter than

wind] that covered by suspension motion. The third kind

of motion, namely surface creep, is for sand parti-

cles gliding along the surface of the ground, and

Figure 1. it is mainly for larger particles. If one investi-
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gates the sizes of sand particles on a sand dune where sand

shifts around intensely and dunes come and go quickly, one finds

the distribution of the sizes of sand-particles is always quite

uniform - that is, the majority of the particles are in the

range of 0.2 - 0.3 mm, and very few are smaller than 0.05 mm or

larger than 0.5 mm. Such a distribution in fact characterizes

a sand dune. And in a sand dune, one may safely assume that

diameters of particles are all about 0.25 mm. Consequently, in

a sand dune one does not consider suspension motion at all, but

limits himself to the saltation motion.

4. Wind Intensity in Moving Sand Particles.

According to Chepil's experiments, when a wind reaches a

certain speed, sand particles start to roll on the surface of a

sand dune and become accelerated. After the accelerated sand

particles collide with bumps on the surface, they begin to jump

up to start saltation motion. In this case, the relationship

between the wind speed and the diameter of a sand particle is

very similar to the situation when a river carries along chunks

of mud.

There have been a lot of experiments, since ancient times,

to observe the motion of mud chunks in a river. The experimental

results are arranged, with respect to the wind speeds of certain

values, and wind speeds 6f interest are limited mainly to those

close to the ground surface. The height z and the wind speed U

have the following relationship:

U=5.75v1log3Oz/k, v. /Irol

where T : sheariforce which moves sand particles, p: density

of the air, and k: the degree of coarseness of the sand surface.

The coarseness k of the surface varies from place to place, but

on a flat surface, it is about equivalent to the diameters of

particles, d. The quantity j is called the frictional velocity,
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because it has the dimension of a velocity, but really vl is a

parameter to be fixed by the experiment of the moment when sand

particles start to move. Figure 2 is due t'o Chepil, and ,iin
80. a 1 1 the figure is the fric)tional velocity

obtained when sand particles started

S I  to!move. According to the figure,

40 " - within the limit of ad>0.1, jv*s is pro-

20 portional to 'Vd/. However, in many

other experiments, the relationship
o0I ' between ~iMJ and d is shown by the fol-
I 0.1 . 5 1 2 3 4

d dmmxo lowing formula:

Figure 2. .. -
where a: the density of sand parti-

cles and A: constant. This empirical formula in fact can be

theoretically worked out as follows: In the vicinity of the

surface, there are N sand particles in a unit volume, then the

volume of a sand particle is N*Trd3/6.jIf we call this volume X,

then N = 6X1/wd. The total number of sand particles in a unit

surface of the sand which is being directly bombarded by the wind

is called n; then /

On the other hand, the shear force on a unit surface is @g, and

this force is equal to the resistance of n particles on a bump

of the sand surface. Consequently, the resistance D applied on

one sand particle is shown in average as follows:

D - "

Now if the static frietion angle is Y, then the condition to

move a particle is D mg tai. If v is the friction velocity

when all.the sand particles of a surfacel aremoving in a statis~-

!tical sense, then]

With m = 7ad /6, one finds
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In taking into account the air buoyancy, one gets Formula (3).

Actually, v0 and ' o.5 These values cadnbe inserted in (4) but

they will yieldja value of 'I which is nearly 10 times larger

than the experimental value. This is due to the fact that this

formula is obtained with the assumption as given in (4) that

all particles move around in the same manner. However, in real-I

ity many particles are so small that they need a far smaller

value of 'xaito move them. Consequently, it is natural that the

theoretical value of y*tlfrom (4) is much larger than the real

value. There is another theoretical approach in which it is

assumed that ,*luis entirely due to the force which the wind exerts

on the sand surface. However, we believe this approach does not

have any theoretical justification. In Figure 2, in the region

of ad<0.l and for a smaller d, v*#l increases. According to Chepil's

explanation, when particles are in fine granules, the surface

has a small coarseness and, consequently, the situation is equi-

valent to the case of smooth ground, on which a wind blows.

Hence, no turbulence can reach the vicinity of the surface, but

a low-layer of a gradient flow is formed and sand particles can

bury themselves in this layer. Consequently, for the same va-

lue, the wind velocity at the sand surface - namely, at z=d -- be

comes smaller, for a smaller d. Since the resistance which moves

sand particles is proportional to the surface wind velocity, for

a smaller d one needs a larger .Y. Although vl/ can be worked out

theoretically for d in this region, the effort may be omitted

here, because fine granular sand particles are not a part of the

problem related to the motion of a sand dune.

5. Stationary Sand Flows

In the previous section, we have described the condition /502

with which sand particles can be moved by the resistance applied

to the sand, and the resistance is determined by the wind velo-

city in the vicinity of the sand, namely, in the region of z=d.
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If we call this velocity V, then when V reaches a certain value,

unstable sand particles on the surface x will start to roll, and

then be accelerated by the wind. When the accelerated particles

hit a bump on the surface, they jump up into the air. The par-

ticles will come back down due to the gravity. However, if

particles on the way down do not lose too much energy to the

wind, their impact to the ground can create more unstable sand

particles. These unstable particles can again be activated by

the wind. The surface wind velocity V can move all the unstable

particles, and thus the amount of flying sand particles will in-

crease, but since flying sand particles have to obtain their mo-

menta from the wind, the wind eventually will be slowed down too.

When V goes down below the capacity to move x sand particles, the

flying sand particles will all go down to the ground and the

amount will decline. Thus, the wind velocity and the amount of

flyinglsan~d regulate each other to produce a stationary state.

A stationary sand flow indicates that the surface wind velocity

is always strong enough to move sand particles. When the wind

velocity is at a certain value, it creates the largest amount of

sand particles (called the saturated amount of sand particles).

The horizontal shear force of the air is equal to the sum of

the shear stress Ts due to the moving sand particles and the

Reynolds' stress Tw due to the turbulence: namely, T=Ts+T w . In

the vicinity of the ground surface, one can neglect the horizon-

tal pressure gradient, and therefore xT:is constant in the verti-

cal direction and equals the shear stress To applied to the moving

sand particles. When the amount of flying sand increases, so

does Ts . However, since T s can never exceed o, the condition

for saturation is therefore TST 0. At a source of resonably dry

sand, the amount of flying sand is always at the saturation point

except at the periphery of the source.
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6. The Motion of Flying Sand in the Air.

As mentioned before, for particles of diameters around 0.25mm,

one j does not have to consider turbulence. Although the wind velo-

city V varies in the vertical direction, yet since we cannot han-

dle this variation, the wind velocity V has to be assumed as con-

stant. If the wind direction is taken as the x-direction, and

the vertical direction.is the z-direction, then the equations of

motion can be written as follows, assuming that the resistance

force is proportional to the velocity:

(a is a constant)

m=z=-mg-crz (6)\

Now at t=;] x=0, z=0, ,=ul and t=wl, and for a short jumping dis-

tance, ul and w1 can be assumed as very small. Then

(8)
where B=a/m. Consequently, the falling velocities, u 2 and w2,
jumping time T, jumping distance L and jumping height h of a sand

particle can be found to be

L= -!5 (u,+u.), h. W= (9 
9 2g9

The resistance of the particle is, according to Stokes' law,

found from a=37rvd, but since the Reynolds number 10 -50 .b.tained]

by comparing with the experimental results, a=2X37d.

7. Distribution of Flying Sand in the Vertical Direction

In stationary sand flow, the number of sand particles

jumping off the ground must be equal to the number of sand par-

ticles falling down to the ground. This number is called n .
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According to the experiments by Bagnold and Chepil, since most of

the sand particles are jumping up vertically, in (9), ul can be

neglected, as compared to wl and u2 . Since the situation at the

sand surface is totally random, the velocity w distribution of

jumping particles follows] the Maxwell distribution. However, the

probability to move from w1 <0 to w 1 0 is zero. If g(wl ) is the

probability g(wl)dw1 for a particle to fall at a velocity w1 between

l and w1 +dwl,1 then
-- -(wsdw1  ---exp 1 jdr, w ]0

where wo is the average value of wl .  From (9), one can replace

w h by Fthen the probab -t] f(h)dh for a particle to fall betweenL

h and h+dh is

- 1 1 1

'V Ih ex 1 h10f /ho- Ih " .

where ho is the average of h. Next, if n(z)dz is the number of

sand particles at the height in the range between z and z+dz and

the average x-component of the velocity is 5 at this height,

then in a unit time, the number of sand particles flow through

this height is q(z) dz which can be shown as

Now n and a can be found as follows. If particles stay in the

range of z and z+dz for the duration of dt, then it is dz/w.

From (7) and (8), w .2g(h-z) and consequently,

dt= dz
t'2g (h-z)

Since it takes the same amount of time for a particle to fall

down as it flies up, the time for a particle to finish one jump

is 2 dt. During this time, a total of n dt makes the jumps.

Consequently,

S1i h

Now from (7) and (8), the x-component df the particle-velocity /503

at z,

9



The (t) sign shows the direction of jumping up or falling down,

respectively. Consequently, in the up-and-down motion, the aver-

age value of u is independent of z but depends on h alone, hat is-
/if we call this average velocity (h), then[j 1

Finally,

q (z) =Mnf(h)dh. 2 / (13)

9 1 - - h z=2mno. 1 exp -- {-

This shows that z and lol q(z) have a linear relationship.

Figure 3 shows the experimental values obtained by Chepil, ahdn

S:) Io a. ) oneQsees t at the theoretical formilaOgenerflly

Fin~SandyLoim satisfies the curve. The above formula was

obtained by assuming wI and,ltherefore1h are

negligible, and V is assumed to be at a con-

stant. For a larger h, one needs a large V

and therefore,Ithe average velocity of sand

, , ," particles must be also large. Consequently,

zq()mg.cm&se for a large z value, the amount of sand parti-

Figure 3. cles ought to be larger than that obtained
(in a logarlithmic from the above formula. This is why in the

scale)
experimental curve of Figure 3, the curve be-

comes a straight line for large z-values.

8. Relationship Between Wind Intensity and the Amount of Flying

Sand

We divide the air space into 2 layers. The top layer has

no influence on the flying sand, while in the bottom layer the

effect on the shear force of turbulence is assumed to be absolutely

negligible. This lower layer of air space is called the layer of

flying sand. In the flying sand layer, the wind loses its momen-

tum to sand. This means that flying sand particles are like

grass in a grassland bending to a wind and thus this layer can

also be understood as a surface with coarseness. The coarseness,

10



of course, depends on the thickness hs of the flying sand layer.

The velocity dist ibution of the layer can be shown as (2)
-6~ U =5w 675 og_'i cO _ 0

where c is a constant.

Consequently, immediately outside the layer - namely, when

z=h s - the wind velocity is proportional to t'i. Since the shear

stress is v.I , work done in a unit time outside the layer is

thus proportional to ev-J. This work is provided to the layer in

order to increase the kinetic energy of the flying sand. Now

we bring average values into the problem, taking the average v IL

values of jumping-up velocity and the horizontal component of

the falling-down velocity of a sand particle as wl and u2 res-

pectively. Also we ignore the error in assuming that the aver-

age of the square is equal to the square of the average. Then

the above working relationship becomes

-mou2=kv k isa constant I (14),

Now since the momentum increase in one jump is mu2 (where ul is

neglected because it is a small value) and in a state of satura-

tion the shear stress applied to the sand surface is equivalent

to the momentum change 'of a sand particle,1

rnO= pV-. .1 (15)1

And if one neglects ul in (9),

u-=24 w-I ) (16)

Consequently, frio-mthese ej quations (1 ), (15) and (16), one

can find u waWlnd no and they are

S 2" 1 0

Hence, the average values of a jumping distance and the height,

L and h, are from (9)Was follows:j

L2k2Jv*2, hV-* .(18)]

Next, we consider an infinite vertical plane, perpendicular to

11



the direction of the wind. The amount of sand particles passing

through a unit area on this plane in a unit time is Q and

Q=)2?oL=k 6F -* (19)

According to the experiments by Bagnold, a sand particle of a

diameter around 0.25 mm has V O 250 cm/sec and Q f 1.5 ./g) Other

constants can also be shown to be m=2.17X10 -5g, B=4.00 sec- , and

p=1.25X10- 3 g/cm 3 . If one inserts these values into (17), (18)

and (19), then

k=1.53, u.= 3. 06 V,. W =1. 50 ,
o10 =18. 8 vs. L =4.59 ./g, h =1.12 Iv 2 g. (20) 1

TABLE 2. Thus for each v.1 value,' the other

.0 Q -quantities can also be shown as in

Cmt. c- 1  cm- c m Table 2.1 Consequently, the amount

20 61.21 30 37 1.5 0.45 0.015 of flying sand Q is generally pro-

40 122. 60 752 7.5: 1.8 0.1n portional to the third power of the
60 183 90 1130 17.3 4.11 0.414 .. -s 3 245 1130 17.3 j.1 0414 wind velocity (v* 3 ) for a certain given

120 1500 30.056 0. 93L

height. It is also shown in the

formula that a weak wind for a longer duration moves the sand

more effectively than a strong wind blowing for a shorter period

of time.

9. Surface Creep /50

We consider a jumping motion in which sand particles collide

onto the sand surface and bounce up. If the x- and z-components

of the velocity before and after the collision are (u 2 , w 2 ) and

(U, wl), respectively, then'a sand particle 'ill receive in the

x-direction a force of m(u 2 -ul) and in the z-direction - a force

of m(w 2-w1 ). Consequently, when some condition is satisfied in

the collision, the particle will slide,\making a "surface creep"

motion: I(u)- r ,--2)+ m9tan (

where p\is the static frictional angle of the sand particle. We

12



can rewrite the condition as follows:

tan c_

From (17) of the previous section, one knows that the left

side of the condition on the average is proportional to tiy. If

in a unit time and in a unit volume, the number of collisions is

called n , then the above condition for no collisions in a unit

time and in a unit volume is proportional to n '!i. Next, if a

sand particle slides on for a distance of Lo, in a collision

the particle will do a work of L x mg tan V Wfto the sandsurface)j

and this amount of work must be porportional to the loss of the

kinetic energy of the particle. Taking the proportional constant

as C 1 , one gets/

As we did before, the right side is proportional to .n i* and the

average value of Lo is proportional to '.kv/. Consequently, if the

amount of sand particles doing surface creep on a unit area is

called Qc, then

By use of (17) and replacing no ,

Qc==C.--v, C-is a constant. (21)

By comparing (19) and (21), one gets Q c/Q=constant. Bagnold

made some experiments in deserts, and he found that for the aver-

age diameter of 0.25 mm, the ratio Q /Q is independent of the

wind velocity but is always about 0.25. The observation agrees

with the above theory.

10. Appearance of Sand-Ripples

If we go to a beach on a very windy day, we can see sand

waves with wavelengths of several cm, moving slowly along with

the wind. Such sand waves are called sand-ripples. Up to the

present time, various observations and researches have been made
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on these sand-ripples. Exner tried to explain the formation of

sand-ripples as due to some turbulence, but his theory fails to

produce the wavelength of a sand-ripple, and it also does not

show the relationship between the wind intensity and the ripple

formation. Since ordinary sand particles, as described above,

are not greatly influenced by turbulence, due to this point alone,

one can argue that Exner's approach is questionable.I According

to Chepil's experiments, for sand particles with diameters either

smaller than 0.05 mm or larger than 0.7 mm, no ripple can be

formed by a wind with intensities of any magnitude. Also Bagnold

reported a strong relationship existing between the wavelength

of a sand-ripple and the wind intensity. Based on all these

points, it is appropriate to assume that a sand-ripple formation

is theoretically related to the problem of the saltation motion

of sand particles. We can study the stability problem on the

sand-surface, based-on this viewpoint. We first assume that a

wind is blowing over a flat surface with a uniform velocity.

The air viscosity is neglected. If the wind receives a velocity

disruption of the amount of u and w in the x and z-direction,

respectively, and the air pressure is taken as p, then the equa-

tion of motion and equation of continuity can be shown as

" +u A _ 1 - Ap

t P ax

Now we express the unevenness of the sand-surface by the height

of the sand, y, then the slope

With u=u exp(oat+ivx) and w=w exp(at+ivx), one gets the followin

solutions:
u =uoexp't+ivl -z],

w= uOexp ot+i Y -zJ

y= expat+iv x

14



The time variation of the sand height (y) at a certain spot is

proportional to the difference between the number of sand par-

ticles falling down on this spot and the number of sand particles

jumping off the spot. Since most of the sand particles take a

similar path in a saltation motion, particles jumping off from

the spot where x lies between § and +dE will fall in x and x+dx.

Consequently,

where A is a positive constant, and N is the number of particles

jumping off from a unit surface in a unit time. By rearranging

the above relation, one gets

Y A[N (j) (23)1
6t dx

If sand particles, due to the wind dusturbance, jimp up with a

velocity of wl, and if one assumes that a strong wind velocity

will provide a strong jumping velocity wl, then

wl = + auz= 0 ; a is a positive constant,

where the second order term is neglected. o is the jumping

velocity when no disturbance is present. One can find the jump-

ing distance from (9) as

L = L0o+ bzo,\ ( 4 )]
where b is a positive constant, and L° is the distance when no

disturbance is present. Consequently,

and therefore

. _ ( i)1+ (25-.

From (22), (24), and (25),

-=1-ibu 0vexp'ot+i(x-L)] , (201 /505

Now assuming that the total number of the particles involved in

the saltation motion is constant, namely N(E) = N(x) = No, from

(22), (23) and (26) one gets

1-c= -iANobvexP-tLo J 27
(27)*fis the: equation which determines the stability of a sand

*Translator's Note: Mistakenly printed as (2 ) in the
original foreign text. 15



surface. When the real part of a is positive, the situation is

unstable, and when it is negative the situation is stable. If r)

one sets

=aol+io 2  (a 1 and a2 are real numbers)

then (27) becomes

(o= -AbVNv sinIL, (28)j
a = A bVNo cos -Lo

Consequently, a1 >0 indicates the region of instability, namely

(2m+l)ff>vL >2m (m positive integer). In this region, the most

unstable point of a1 is at

-2 tan vL j (29)j

The larger is m, the larger the value of a 1 will become, and

therefore,la greater instability appears. Then the question re-

mains of when and what value of m creates a sand-ripple. The

wavelength of a sand-ripple is obtained as the roots S of (29),

namely vLo =m, or

It-I is known from (18) that L is proportional to'p.. Xs is also

proportional to 2v* and consequently Figure 4 is due to Bagnold from

: I hi's ekperiments' and- it shows the experi-

mental ,relationship between and .,

One sees that the theory agrees quite

well with'the experimental data. Actu-

5 . ally, a sand ripple appears when m=o.

o _ 0i A sand-ripple appears when vL satis-0 000 2000 3000 4V0

., cm!/s_ cfies (29), and when that- happens,-'

Figure 4. -0O, that is, the propagation speed of

the wave is close to zero. This is due

to the fact that we have so far only considered the saltation

part of the motion. In reality, the surface creep motion will

push the sandr-ripple slowly forwar.

16



In the above theoretical explanation, many assumptions and

omissions have been made. Consequently, the theory is far from

complete. We hope to be able to fill in these imperfections in

a future study.

11. Peculiarities in the Motion of Sand and a Sand-Hill

The contents of this section is not original research of

the present author. However, since there are some interesting

peculiarities in the movement of sand, we want to include it in

this article, along with some simple explanation of the problem

of a sand dune.

We have noted above that sand can be sorted out in sizes

by a wind. In an ordinary sand source, all knids of sizes are

usually present. Suppose we mix particles of different sizes

artificially into some sand and blow a wind over to observe the

distribution of particle sizes afterwards, both in the wind and

on the ground. We find the distribution on the ground is differ-

ent, whether we have mixed the sand with alot of finegranules or

a lot of larger particles, but in the wind the distribution does

not change due to the artificial mixing. This is due to the

sorting effect of the wind, and the unchangable distribution of

sand particles i in the wind is the same distribution one may

find in a sand dune. Fine granules are very difficult to be

picked up by a wind, as shown in Figure 2, because they are pro-

tected by large particles. On the other hand, large particles

are obviously difficult to be blown up by a wind. In effect,

only particles with diameters around 0.25 mm can easily be picked

up by a wind. Consequently, around a sand dune, one finds the

average diameter of sand particles is around this value and the

distribution has a quite definite pattern. Now we should con-

sider the aforementioned saturated amount of sand particles; in

other words, we should consider how for a given wind intensity,
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the condition of a sand surface affects the saturated amount.

If the ground has accumulated a lot of large sand particles or

small rocks, sand particles, after they collide with the ground,

bounce back more strongly, and consequently, they can reach a

higher altitude with a larger vvelocity. Hence, for the same

intensity of wind, a larger amount of sand particles will be

blown up. This situation is similar to the case of a solid

ground. Contrary to this, in the case of a river surface, the

amount of flying sand is zero because sand particles will all

sink to the bottom of the river. In a largesand source, such

as a desert, there are a large amount

of sand particles with large diame-

oters, and in such a place smaller

sand particles do not accumulate

but they are carriedlaway by winds.

Consequently, only coarse sand par-

Figure 5. ticles are eventually left behind.

Sand particles carried away by winds will accumulate at some

sfandldune area. This is one of the reasons a sand dune is formed.

Next, a few simple explanations are needed for the Sand dune

problem. A complete reason for sand dune formation is not yet

attainabl( as far as the present author knows. The cross-isection

of a sand dune, formed naturally, can be shown in Figure 5. The

angle of stability of sand is found to be at 8-150 for an upward /506

wind and it is almost 300 for a downward wind. In observing

the distribution of sand particles, one finds that particles at

the foot of a downward hill are coarser than those at the upward

hill. This is due to the fact that smaller particles, which can

perform saltation motion roll upwards but do not fall down to

the foot of a hill to remain static, while the coarser particles

which can perform only surface-creep motions accumulate slowly

at the foot of a hill. Exner has made some simple calculation

on the movement of sand dunes, and we want to introduce it here.
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Suppose a sand dune moves a distance of Al in a time At in the di- I

rection of the downward wind, preserving its original shape (Fig-

ure 6). If M is the amount of sand being moved by the wind in

a unit area in a unit time and _P is the den-

' sity of the sand dune (not the density of a

sand particle), and h is the height of the

Figure 6. dune, then

XlJ/t =.Vlipsh

where it has been assumed that the upward angle is smaller. The

magnitude of phas been found elsewhere to be 1.22 gm/cm . This

theory due to Exner shows that the speed of sand dune movement is

proportional to M, but inversely proportional to the height of

the dune. Consequently, a higher sand dune moves more slowly.

To prevent sand intrusion, one of the methods is to make the arti-

ficial sand dune high. The abolve theoretical formula indeed

agrees well with reality. For a sand dune" about 50 meters

high, the moving distance in one year is about 10 m, although

it varies somehow, depending on the intensities of the wind blow-

ing during the year.

In the region of sand dunes, there are all kinds of sand-

ripples with wavelengths ranging from small to as large as 100 m.

There are also many sand dunes which fit into the aforementioned

standard corss-section, so-called Barchan. However, owing to

space limitations, this discussion will be omitted in this arti-

cle.
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